Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.03.27.586820

ABSTRACT

The highly mutated SARS-CoV-2 variant, BA.2.86, and its descendants are now the most frequently sequenced variants of SARS-CoV-2. We analyze antibody neutralization data from eight laboratories from the UK, USA, Denmark, and China, including two datasets assessing the effect of XBB.1.5 vaccines, to determine the effect of infection and vaccination history on neutralization of variants up to and including BA.2.86, and produce antibody landscapes to describe these neutralization profiles. We find evidence for lower levels of immune imprinting on pre-Omicron variants in sera collected from Denmark and China, which may be explained by lower levels of circulation of the ancestral variant in these countries, and the use of an inactivated virus vaccine in China.

2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.09.27.559689

ABSTRACT

The antigenic evolution of SARS-CoV-2 requires ongoing monitoring to judge the immune escape of newly arising variants. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal sera. We compared 18 datasets generated using human, hamster, and mouse sera, and six different neutralization assays. Titer magnitude was lowest in human, intermediate in hamster, and highest in mouse sera. Fold change, immunodominance patterns and antigenic maps were similar among sera. Most assays yielded similar results, except for differences in fold change in cytopathic effect assays. Not enough data was available for conclusively judging mouse sera, but hamster sera were a consistent surrogate for human first-infection sera.

3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.08.13.553144

ABSTRACT

A series of SARS-CoV-2 variants emerged during the pandemic under selection for neutralization resistance. Convalescent and vaccinated sera show consistently different cross-neutralization profiles depending on infecting or vaccine variants. To understand the basis of this heterogeneity, we modeled serum cross-neutralization titers for 165 sera after infection or vaccination with historically prominent lineages tested against 18 variant pseudoviruses. Cross-neutralization profiles were well captured by models incorporating autologous neutralizing titers and combinations of specific shared and differing mutations between the infecting/vaccine variants and pseudoviruses. Infecting/vaccine variant-specific models identified mutations that significantly impacted cross-neutralization and quantified their relative contributions. Unified models that explained cross-neutralization profiles across all infecting and vaccine variants provided accurate predictions of holdout neutralization data comprising untested variants as infecting or vaccine variants, and as test pseudoviruses. Finally, comparative modeling of 2-dose versus 3-dose mRNA-1273 vaccine data revealed that the third dose overcame key resistance mutations to improve neutralization breadth.

4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.12.11.22283166

ABSTRACT

Background: Information on the safety and immunogenicity of the omicron BA.4/BA.5-containing bivalent booster mRNA-1273.222 are needed. Methods In this ongoing, phase 2/3 trial, 50-μg mRNA-1273.222 (25-μg each ancestral Wuhan-Hu-1 and omicron BA.4/BA.5 spike mRNAs) is compared to 50-μg mRNA-1273, administered as second boosters in adults who previously received a 2-injection (100-μg) primary series and first booster (50-μg) dose of mRNA-1273. The primary objectives were safety and immunogenicity 28 days post-boost. Results Participants received 50-μg of mRNA-1273 (n=376) or mRNA-1273.222 (n=511) as second booster doses. Omicron BA.4/BA.5 and ancestral SARS-CoV-2 D614G neutralizing antibody geometric mean titers (GMTs [95% confidence interval]) after mRNA-1273.222 (2324.6 [1921.2-2812.7] and 7322.4 [6386.2-8395.7]) were significantly higher than mRNA-1273 (488.5 [427.4-558.4] and 5651.4 (5055.7-6317.3) respectively, at day 29 post-boost in participants with no prior SARS-CoV-2-infection. A randomly selected subgroup (N=60) of participants in the mRNA-1273.222 group also exhibited cross-neutralization against the emerging omicron variants BQ.1.1 and XBB.1. No new safety concerns were identified with mRNA-1273.222. Vaccine effectiveness was not assessed in this study; in an exploratory analysis 1.6% of mRNA-1273.222 recipients had Covid-19 post-boost. Conclusion The bivalent omicron BA.4/BA.5-containing vaccine mRNA-1273.222 elicited superior neutralizing antibody responses against BA.4/BA.5 compared to mRNA-1273, with no safety concerns identified.


Subject(s)
COVID-19
5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.28.477987

ABSTRACT

During the SARS-CoV-2 pandemic, multiple variants with differing amounts of escape from pre-existing immunity have emerged, causing concerns about continued protection. Here, we use antigenic cartography to quantify and visualize the antigenic relationships among 16 SARS-CoV-2 variants titrated against serum samples taken post-vaccination and post-infection with seven different variants. We find major antigenic differences caused by substitutions at positions 417, 452, 484, and possibly 501. B.1.1.529 (Omicron) showed the highest escape from all sera tested. Visualization of serological responses as antibody landscapes shows how reactivity clusters in different regions of antigenic space. We find changes in immunodominance of different spike regions depending on the variant an individual was exposed to, with implications for variant risk assessment and vaccine strain selection.

7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.15.21267805

ABSTRACT

Data obtained on SARS-CoV-2 variant Omicron suggest that Omicron poses an increased risk of symptomatic breakthrough infections in people who receive only 2 doses of mRNA-1273. Administration of a booster mRNA vaccine may substantially reduce this risk.


Subject(s)
Breakthrough Pain
8.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-832531.v1

ABSTRACT

Correlates of protection for COVID-19 vaccines are urgently needed to license and deploy additional vaccines. We measured immune responses to four COVID-19 vaccines of proven efficacy using a single serological platform calibrated to the international standard. IgG anti-Spike antibodies correlated significantly with efficacies for original virus and alpha variant and were highly correlated with ID50 neutralization in a validated pseudoviral assay. The protective threshold for each vaccine was calculated for IgG anti-Spike antibody. The mean protective threshold for all vaccine studies was 154 BAU/ml (95%CI 42-559), and for the vaccine studies with antibody distributions that enabled precise estimation of thresholds (i.e. leaving out 2-dose mRNA studies) was 60 BAU/ml (95%CI 35-102). We propose that the proportion of individuals with responses above the appropriate protective threshold together with the geometric mean concentration can be used in comparative non-inferiority studies with licensed vaccines to ensure that new vaccines will be efficacious.


Subject(s)
COVID-19
9.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.27.441655

ABSTRACT

SARS-CoV in 2003, SARS-CoV-2 in 2019, and SARS-CoV-2 variants of concern (VOC) can cause deadly infections, underlining the importance of developing broadly effective countermeasures against Group 2B Sarbecoviruses, which could be key in the rapid prevention and mitigation of future zoonotic events. Here, we demonstrate the neutralization of SARS-CoV, bat CoVs WIV-1 and RsSHC014, and SARS-CoV-2 variants D614G, B.1.1.7, B.1.429, B1.351 by a receptor-binding domain (RBD)-specific antibody DH1047. Prophylactic and therapeutic treatment with DH1047 demonstrated protection against SARS-CoV, WIV-1, RsSHC014, and SARS-CoV-2 B1.351infection in mice. Binding and structural analysis showed high affinity binding of DH1047 to an epitope that is highly conserved among Sarbecoviruses. We conclude that DH1047 is a broadly neutralizing and protective antibody that can prevent infection and mitigate outbreaks caused by SARS-like strains and SARS-CoV-2 variants. Our results argue that the RBD conserved epitope bound by DH1047 is a rational target for pan Group 2B coronavirus vaccines.


Subject(s)
Severe Acute Respiratory Syndrome , Infections
10.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.10.430696

ABSTRACT

The development of a portfolio of SARS-CoV-2 vaccines to vaccinate the global population remains an urgent public health imperative. Here, we demonstrate the capacity of a subunit vaccine under clinical development, comprising the SARS-CoV-2 Spike protein receptor-binding domain displayed on a two-component protein nanoparticle (RBD-NP), to stimulate robust and durable neutralizing antibody (nAb) responses and protection against SARS-CoV-2 in non-human primates. We evaluated five different adjuvants combined with RBD-NP including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an alpha-tocopherol-containing squalene-based oil-in-water emulsion used in pandemic influenza vaccines; AS37, a TLR-7 agonist adsorbed to Alum; CpG 1018-Alum (CpG-Alum), a TLR-9 agonist formulated in Alum; or Alum, the most widely used adjuvant. All five adjuvants induced substantial nAb and CD4 T cell responses after two consecutive immunizations. Durable nAb responses were evaluated for RBD-NP/AS03 immunization and the live-virus nAb response was durably maintained up to 154 days post-vaccination. AS03, CpG-Alum, AS37 and Alum groups conferred significant protection against SARS-CoV-2 infection in the pharynges, nares and in the bronchoalveolar lavage. The nAb titers were highly correlated with protection against infection. Furthermore, RBD-NP when used in conjunction with AS03 was as potent as the prefusion stabilized Spike immunogen, HexaPro. Taken together, these data highlight the efficacy of the RBD-NP formulated with clinically relevant adjuvants in promoting robust immunity against SARS-CoV-2 in non-human primates.


Subject(s)
COVID-19
12.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.30.424745

ABSTRACT

Development of an effective AIDS vaccine remains a challenge. Nucleoside-modified mRNAs formulated in lipid nanoparticles (mRNA-LNP) have proved to be a potent mode of immunization against infectious diseases in preclinical studies, and are being tested for SARS-CoV-2 in humans. A critical question is how mRNA-LNP vaccine immunogenicity compares to that of traditional adjuvanted protein vaccines in primates. Here, we found that mRNA-LNP immunization compared to protein immunization elicited either the same or superior magnitude and breadth of HIV-1 Env-specific polyfunctional antibodies. Immunization with mRNA-LNP encoding Zika premembrane and envelope (prM-E) or HIV-1 Env gp160 induced durable neutralizing antibodies for at least 41 weeks. Doses of mRNA-LNP as low as 5 μg were immunogenic in macaques. Thus, mRNA-LNP can be used to rapidly generate single or multi-component vaccines, such as sequential vaccines needed to protect against HIV-1 infection. Such vaccines would be as or more immunogenic than adjuvanted recombinant protein vaccines in primates.


Subject(s)
HIV Infections , Acquired Immunodeficiency Syndrome , Communicable Diseases
SELECTION OF CITATIONS
SEARCH DETAIL